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Chapter 1

Abstract

1.0.1 Abstracto

Los lenguajes modernos orientados a objetos, como C# y Java, permiten que los programadores
desarrollen aplicaciones complejas con ms rpidez. Esos lenguajes estn basados en la definicin
de estructuras de datos mediante el uso de objetos en el heap que se pasan por referencia.
Esto simplifica la programacin al tener reserva y liberacin automtica de memoria, a la vez que
recogida automtica de basura.

Esta simplificacin de la programacin tiene un coste en eficiencia. El uso de objetos pasados
por referencia en lugar de los ms livianos pasados por valor puede tener un efecto negativo en
la memoria en algunos casos. Ese coste puede ser crtico cuando los programas se ejecutan en
entornos con recursos limitados, como dispositivos mviles y systemas de ”cloud computing”.

Esta tesis explora el problema mediante el uso de un modelo de memoria simple y uniforme
para mejorar la eficiencia. En el presente trabajo atacamos este problema proporcionando un
anlisis esttico automtico y correcto que identifica si un tipo ”por referencia” puede ser conver-
tido en un tipo ”por valor” donde la conversin puede traer mejoras de eficiencia. Nos centramos
en programas C# y nos basamos en una combinacin de comprobaciones sintcticas y semnticas
para identificar clases cuya conversin es segura.

La eficacia de este trabajo se evala con la identificacin de los tipos convertibles y el impacto
de la transformacin propuesta. El resultado muestra que la transformacin de tipos por referencia
a tipos por valor puede tener un efecto sustancial en la eficiencia. En nuestros casos de estudio,
optimizamos la eficiencia de una simulacin de Barnes-Hut, consiguiendo una reduccin del 89%
en la reduccin total de la memoria reservada y una reduccin del tiempo de ejecucin de 8%.

1.0.2 Abstract

Modern object oriented languages like C# and JAVA enable developers to build complex appli-
cation in less time. These languages are based on selecting heap allocated pass-by-reference
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objects for user defined data structures. This simplifies programming by automatically man-
aging memory allocation and deallocation in conjunction with automated garbage collection.
This simplification of programming comes at the cost of performance. Using pass-by-reference
objects instead of lighter weight pass-by value structs can have memory impact in some cases.
These costs can be critical when these application runs on limited resource environments such
as mobile devices and cloud computing systems. We explore the problem by using the simple
and uniform memory model to improve the performance. In this work we address this prob-
lem by providing an automated and sounds static conversion analysis which identifies if a by
reference type can be safely converted to a by value type where the conversion may result in
performance improvements. This works focus on C# programs. Our approach is based on a
combination of syntactic and semantic checks to identify classes that are safe to convert. We
evaluate the effectiveness of our work in identifying convertible types and impact of this trans-
formation. The result shows that the transformation of reference type to value type can have
substantial performance impact in practice. In our case studies we optimize the performance
in Barnes-Hut program which shows total memory allocation decreased by 93% and execution
time also reduced by 15%.
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Chapter 2

Introduction

Modern object-oriented languages, such as C# and Java, provide a host of features that enable
developers to build complex applications in less time and with fewer errors than is possible with
languages such as C/C++. One of the most important of these features is the emphasis on a sim-
plified and uniform memory model that is exposed to the developer. Modern object-oriented
languages are based on selecting heap allocated pass-by-reference objects as the primary (or
only) form of user defined aggregate concepts. This uniformity greatly simplifies the concep-
tual model for the behavior of a program that the developer must consider. In conjunction with
automated garbage collection, this simplification eliminates entire classes of possible program
errors while allowing the developer (architect) to focus on the desired behavior of the program
instead of the details of storage location issues, lifetime management, and assignment seman-
tics in the program.

This simplification of the semantics of the memory model, and associated simplification
of the development process, comes at the potential cost of program performance. In some
cases the use of pass-by-reference objects instead of lighter weight pass-by-value stack structs

can have a non-trivial performance impact. The performance impacts are usually seen in as
increased runtime, increases in the total amount of memory allocated, and increases in the
maximum live memory space needed by the program. In general these types of issues have
been seen as an acceptable (if unfortunate) cost to pay for improved reliability and programmer
productivity when developing desktop and server applications where memory, computational
resources, and power are all abundant resources. In these scenarios the extra memory used,
along with computational and power cost of manipulating/managing this memory, is negligible
in comparison to the value gained by eliminating large classes of common program errors.
However, these costs can be critical when developing applications for mobile devices or in
cloud computing scenarios. In the case of mobile computing (smart phones, tablets, etc.) there
are hard limits on the amount of memory available, processor speeds, and energy which can
be consumed. For cloud computing power is a major concern and the cost of hosting the
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application is proportional to the processor and memory resources required.

In this work we explore the problem of how to maintain the improvements in developer
productivity and program quality that are obtained by using the simple and uniform memory
model while minimizing the performance impacts that can result. Our approach is designed
around the desire to avoid premature optimization ”We should forget about small efficiencies,
say about 97% of the time: premature optimization is the root of all evil” [15]. Thus, we
want to enable the developer to do the majority of the implementation using a simple memory
model, focusing on translating the application domain into a meaningful set of classes, and then
when needed to optimize the specific memory representations that are actually performance
critical. In practice this approach is problematic as identifying all the locations where the
behavior of a pass-by-reference class may differ from the behavior of a pass-by-value struct
is time consuming and error prone. In this work we address this problem by providing an
automated and sound static conversion analysis which identifies if a by-reference type can be
safely converted to a by-value type without altering the semantics of the program. Further, in the
case where a type cannot be safely converted the analysis can flag the specific features/locations
in the program where the semantics before/after the conversion may differ and recommends
possible resolutions for these problems to the developer.

The approach presented in this work is based on a combination of syntactic and semantic

checks. The syntactic checks identify any possible violations of any language restrictions on
by-value types that may be violated by the conversion. The syntactic checks then identify
possible uses of an instance of a by-reference type which would have visibly different semantics
after conversion to a by-value type. A central issue in determining if a conversion may alter the
observable semantics of the program is in the modification of object fields. A simple approach
is to only allow the conversion of immutable objects – since if an object is immutable then
trivially creating multiple copies of it by converting to by-value semantics will not alter the
observable semantics of the program. However, this is a substantial restriction and greatly
limits the opportunities for conversion. Thus, we introduce the concept of single-observer

writes where at the time of the modification we know that there is a unique base location that
can observe the effect of the write.

The work in this paper focuses on the conversion in C# programs, which provide language
level support for by-value structs. Thus, in many cases the conversion can be as simple as
changing the class keyword to struct1. We demonstrate the effectiveness of the analysis on
a suite of C# applications. The experimental results show that the approach is useful in auto-
matically identifying by-reference class types which can be safely converted to by-value struct
types and, in the cases where conversion may not be safe, provides the developer with a detailed

1The same effect can be achieved, although in a less satisfactory manner, by manually inlining definitions and
passing multiple parameters to methods in Java programs.
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summary of possible problems. Using a profiler we identify high allocation types and utilize
the conversion reports provided to refactor high allocation rate class types into structs. The
resulting programs show up to a 15% reduction in runtime and 93% reduction in total memory
allocation.

This paper makes the following contributions:

Problem Formalization Despite the intuitive nature of the struct conversion problem, and the
frequent manual application by developers, this work provides a novel formalization of
conditions under which such a transformation can be considered safe. This formalization
includes both syntactic and semantic constraints which are sufficient to ensure that the
transformation preserves the behavior of the original program.

Algorithms This paper presents two algorithms for performing the safety analysis for con-
version to structs. The simple algorithm, based on immutability, can be implemented
in existing compilers using only minor extensions to standard points-to analyses. We
also present a more powerful algorithm which requires the use of a more powerful heap
analysis algorithm chapter 5 but which can identify substantially more conversions as
safe.

Warnings The safety analysis algorithms defined in this paper are also capable of diagnosing
why a conversion may be unsafe and reporting a set of possible actions a developer could
take to make the desired conversion safe.

Evaluation We evaluate the effectiveness of both the safety analysis algorithm in identifying
types that can be converted and the impact of these transformations in the overall mem-
ory use and performance of programs in our benchmark suite. These results show that
the transformation of by-reference types to by-value types can have a substantial perfor-
mance impact in practice (in some program a 93% memory and 15% time reduction).
The results also show that the transformation safety analysis algorithm is able to auto-
matically identify many types as safe to convert in practice and, given types identified
as important via profiling, can quickly aid a developer in performing any manual code
modifications to safely perform the desired conversion to a value type.
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Chapter 3

Formal Problem and Motivating Example

In this section we formalize the problem of conversion by-reference objects into by-value
structs in a C# program and introduce a running example that we use to motivate and illus-
trate various concepts throughout the paper.

3.0.1 Formal Problem

The state of a concrete program is modeled in a standard way where there is an environment,
mapping variables to addresses, and a store, mapping addresses to values. We define the state
of a program in the usual way based on an environment together with a store and a set of objects
as a concrete program state. Given a program that defines a set of types, Types, and a set of
fields (and array indices), Labels, a concrete program state is a tuple (Env,σ,Ob) where:

Env ∈ Environment = Vars⇀ Addresses

σ ∈ Store = Addresses→ Objects∪{null}∪Values

Ob ∈2Objects

Values=N∪Structs

Structs =Types× (Labels⇀ Addresses)

Objects =OID×Types× (Labels⇀ Addresses)

where the object identifier set OID= N

In order to focus on the core issues we assume that the set of Values in the program is limited
to integers and user declared by value structs. The Structs are tuples of a type and a map from
field labels to concrete addresses for the fields. Each object o in the set Ob is a tuple consisting
of a unique identifier for the object, the type of the object, and a map from field labels to
concrete addresses for the fields defined in the object. We use the notation Ty(o) to refer to
the type of an object. The notation o.l refers to the value of the field (or array index) l in the
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object. It is also useful to refer to a non-null pointer as a specific structure in a number of
definitions. Therefore, we define a non-null pointer p associated with an object o and a label as
l in a specific concrete heap, (Env,σ,Ob), as p = (o, l,σ(o.l)) where σ(o.l) 6= null. We define a
helper function Fld : Types 7→ 2Labels to get the set of all fields (or array indices) that are defined
for a given type.

As the goal of this work is to transform the uses of a given by-reference type (object) to
uses of a by-value type (struct) without changing the observed behavior of the program we
now formalize what it means for two programs to have the same observational behavior. This
behavior can be formalized by looking at the observable state of the program which we define
based on the value of all primitive paths in the program state.

Definition 1 (Primitive Path). Given a program state s = (Env,σ,Ob) an access path, Ap,

in this program state is a initial variable and sequence of fields (v,〈 f1, . . . , fk〉) where each

fi ∈ Labels. The value, V (Ap,s), of a path is given by the repeated lookup of addresses in the

store σ((. . .σ(σ(Env(v)). f1) . . .). fk)

• An access path invalid if any step in this lookup is undefined or applied on a non-address

value (integer, null, etc.).

• An access path is primitive if the resulting value, V (Ap,s), is an integer.

Definition 2 (Equivalent Program State). Given two program states s1 = (Env1,σ1,Ob1) and

s2 =(Env2,σ2,Ob2) we say these program states are indistinguishable if for all primitive access

paths Ap = (v,〈 f1, . . . , fk〉) in s1 then both Ap is primitive in s2 and V (Ap,s1) =V (Ap,s2)

Given these definitions we can check that, despite any differences in the organization of
memory, any pure expression will have the same valuation in both states. If we have a set
of methods that are observable, e.g. in C# this methods in the System.IO namespace which
interact with the file system would be observable, then as long as at every call to any of these
methods the program state before and after our value type transformations are equivalent then
the two programs are observationally equivalent as well. While this definition allows for a
large amount of flexibility in how we restructure the program this condition provides more
flexibility than needed here. Thus we opt for the simpler, although more restrictive condition,
and consider a program before transformation to value types observationally equivalent to the
program after the transformation when the program states are equivalent at every basic block
entry in the control-flow graph of the program.

Definition 3 (Observational Program Equivalence). Given a program Pr which uses by-reference

types {r1, . . . ,rk} and Pv which is identical to Pr except for the replacement of the by-reference

types with by-value types {v1, . . . ,vk}. We define Pr as observationally equivalent to Pv if when
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1 p u b l i c c l a s s MathVector
{

3 p u b l i c s t a t i c r e a d o n l y i n t NDIM = 3 ;
p r i v a t e do ub l e [ ] d a t a ;

5

}

Figure 3.1: Original version of MathVector class

p u b l i c s t r u c t MathVector
2 {

p r i v a t e dou b l e d a t a 0 ;
4 p r i v a t e dou b l e d a t a 1 ;

p r i v a t e dou b l e d a t a 2 ;
6

}

Figure 3.2: Here we changed the MathVector and its members to Value type

executing them in lockstep then during the execution at every basic block entry the program

state of Pr is equivalent to the program state of Pv.

3.0.2 Motivating Example – Barnes-Hut N-Body Simulation

BH is a program that performs an n-body simulation. This program implements the BarnesHut
simulation algorithm which is a well-known method for reducing the cost of computing the
force interaction of n bodies from order O(n2) to O(n log n).

In a three dimensional space the bodies are divided to form of tree. Each node of tree
represents a part of space and contains sub group of bodies. The root of the tree represents the
entire space. Moving down the tree splits nodes into smaller sub-spaces until the leaf-nodes
which each contain 0 or1 body. Our C implementation of this program contains a MathVector
class which represents a three dimensional vector. This class implements standard operations,
addition, scalar multiplication, dot product, etc., and uses array of double represents the vectors
data. The performance of this program can be improved by converting reference types to value
types. As Figure 3.2 shows we changed the class MathVector in two steps: First we changed
the type of class MathVector to a struct. Second, because we knew that the data array
represents a three dimensional space we replaced an array of double with three members of
double type (data0, data2, and data2).

Using our analyzer, we can create a diagram which represents a snapshot of the abstract
heap chapter 5 at the point of maximum memory consumption during program execution. In
this diagram each node represents a reference type (object) and each edge represents a set
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Figure 3.3: Abstract heap diagram of Barnes-Hut

of pointers. Each node can have multiple edges coming out of the node which represent the
pointers stored in the member fields of that class type. In the BH program the point of maximum
live objects is inside the method stepSystem in the class BTree. Figure 3.3 shows local heap
when MathVector is defined as reference type (class) while Figure 3.4 shows local heap of
the same state of the program when we define MathVector as a value type (struct).

Looking at the Body node we see that it points to four nodes of type MathVector. Fig-
ure 3.5 shows the definition of class Body which has three members of type MathVector (the
fourth is defined in the parent Node class). If we convert the MathVector type to a struct then
the shape of heap would be the same as if we explicitly defined all members of MathVector
inside the definition of the Body class. This can be seen in Figure 3.6. In addition to reducing
the memory overhead of representing the MathVector objects and the double[] this transfor-
mation reduces the number of memory dereferences needed to access the Mathvectors data by
two.

We evaluate the performance impact of the transformation of this program as one of our
case studies and the result showed 93% reduction in total memory usage and 15% reduction in
execution time.
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Figure 3.4: Abstract heap diagram of Barnes-Hut which has been converted to value type.

1 p u b l i c c l a s s Body : Node
{

3 p u b l i c MathVector v e l ;
p u b l i c MathVector acc ;

5 p u b l i c MathVector newAcc ;
p u b l i c d ou b l e p h i ;

7

}

Figure 3.5: Original definition of Body class
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p u b l i c c l a s s Body : Node
2 {

p u b l i c d ou b l e ve l X ;
4 p u b l i c d ou b l e ve l Y ;

p u b l i c d ou b l e v e l Z ;
6

p u b l i c d ou b l e acc X ;
8 p u b l i c d ou b l e acc Y ;

p u b l i c d ou b l e acc Z ;
10

p u b l i c d ou b l e newAcc X ;
12 p u b l i c d ou b l e newAcc Y ;

p u b l i c d ou b l e newAcc Z ;
14

p u b l i c d ou b l e p h i ;
16

}

Figure 3.6: All members of the Body class defined explicitly inline.
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Chapter 4

Conversion Safety Conditions

We begin by formalizing the conditions that need to be checked to determine if a by-reference
type can be safely converted into a by-value type without altering the observable behavior of
the program. In order to precisely describe these conditions we will examine this problem in
the context of the C# programming language. However, we note that our approach can be
applied to many other object-oriented programming languages with only minor changes. We
split the conditions that need to be checked into two groups. The first group involves checking
for a range of syntactic language properties that involve restrictions that the C# language places
on the definitions (e.g. value types cannot be inherited from) and basic usage restrictions (e.g.

value types cannot be assigned the null literal). The second set of conditions involve checking
how the impact of a conversion to by-value semantics may impact the operational semantics of
the program and thus the observable behavior of the execution (e.g. during object mutation or
changing reference equality comparisons to value equality comparisons).

4.0.1 Syntactic Conditions

There are a number of restrictions the C# language places on what can be done with structs
relative to objects. In this section we highlight some of the more important restrictions and how
they can be checked. All of these conditions can be checked via simple analysis of program
source code (and do not require any semantic analysis of program behavior).

Inheritance. In C# structs (value types) are not allowed to inherit from other classes/structs.
However, structs are permitted to implement interfaces. Thus, Given a class cτ the analysis
must inspect the type system for the program to check that (1) the definition for cτ does not
declare any inheritance relations and (2) that there does not exist a c′τ that inherits from cτ.

13



Default Constructions and Field Values. The C# language allows class member fields to
be given a default value during allocation and similarly objects can have parameterless con-
structors. However, to ensure that the by-value copy and default initialization routines can be
implemented efficiently the C# language definition does not permit structs to declare either
default values for member fields or a constructor with no parameters.

Constructor Completeness. In order to ensure that all of the fields in a struct are well defined
the C# language requires that all constructors declared for a struct contain definite assignments
to all member fields declared for the struct.

Type Decorators. In C# classes may be declared static (indicating that there are no mem-
ber methods) or sealed (indicating that the class may not be further inherited from). However,
as structs are always implicitly non-static and can never be inherited from these qualifiers are
not meaningful when applied to structs and thus using them is classified by the C# language as
a error.

Explicit Null Assignment and Compare. All structs have a well defined default value. In
particular each field is assigned the default type for the given field with the C# language defining
the default values for primitive types as:

default(T)=


false if T is bool
0 if T is int
0.0 if T is float
null if T is pointer

However, in contrast to pointers where null always represents not-valid, it is not clear if
this default struct value is a valid value or, like for pointers, it represents something that is
not-valid. Thus, there is an ambiguity in the meaning of explicit null assignments or compar-
isons. The C# language defines the special type Nullable<T> which can be used with struct
types to add a special not-valid value to the domain of the struct type which functions like the
null pointer value. In fact the C# language allows explicit assignment of the null pointer to
Nullable<T> types, which can later be queried via the HasValue property to determine if it
contains a value.

Runtime and Performance Issues. There are a number of situations in which conversion
from by-reference semantics to by-value semantics may be safe wrt. no altering the behavior
of the program but which may result in performance degradation instead of improvement. The
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most two most obvious ways this can happen are if the class which is converted is large, result-
ing in expensive copy operations in the transformed program, and if the type is used heavily
as a method parameter or return value, resulting in large numbers of copy operations being re-
quired. A more subtle issue is that often runtime systems are optimized for the common case of
by-reference semantics instead of the less frequent by-value semantics. This can lead to some
operations having unexpected costs. An example of such an operation is the List<T>.Remove
operation in Microsoft’s .Net 4.0 runtime which, when operating on a list of struct types, al-
locates a large number of System.Reflection.FieldInfo[]. All of these conditions can be
checked for via a simple examination of the code in the source program.

4.0.2 Semantic Conditions

The next set of conditions we examine involve how the replacement of a by-reference type
with a by-value type may impact the operational semantics in the program and thus alter the
observable behavior of the program.

Immutability. The most obvious issue is that mutation of an object may be observed through
multiple memory locations via pointer aliasing. The most obvious condition we can place on
the program to eliminate this problem is to require that any classes we convert are immutable.
We consider an object to be immutable if after construction no fields are modified. We present
a formal algorithm for checking this in Section 5.0.6.

However, as seen in the experimental results (chapter 6) this is too strict and prevents to
conversion of many classes that actually can be safely converted to structs. Thus, we present a
more sophisticated criteria below, Unique Write Observation, which we use to determine if a
write may be on an aliased location.

Equality and Equals. In C# equality (== and !=) have default definitions in the language.
These default definitions are different for by-reference types, where equality is defined based
on the addresses of the pointers, and by-value equality, which is defined based on the bitwise
equality of the values. Thus, it is possible to have two by-reference types which have different
target addresses but which point to memory locations that contain bitwise equal values (i.e.

they are not equal by-reference but are equal by-value). In this case naively converting from
by-reference to by-value type would alter the behavior of the program. Similarly the default
implementation of the Equals member method differs for by-reference and by-value types.In
Figure 4.1 two objects of type Complex has been compared and since this class doesn’t override
equality, the comparison would be based on pointer’s addresses. So c1 and c2 objects are not
equal and the assertion is correct.
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2 p u b l i c c l a s s Complex
{

4 f l o a t r e a l , imag ;
. . .

6 }
. . .

8 p u b l i c vo id Main ( )
{

10 Complex c1 = new Complex ( 0 . 0 f , 0 . 0 f ) ;
Complex c2 = new Complex ( 0 . 0 f , 0 . 0 f ) ;

12

A s s e r t ( c1 != c2 ) ;
14 }

Figure 4.1: Complex Class with Default Equality – Not Convertible

However, the C# language permits the developer to override the equality operators (==, !=)
and the Equals method. In many cases the user defined equality operators/methods are defined
based on the values in the objects instead of the addresses of the objects (as in the default
by-reference operations). If the operators have been overridden in this way then converting
the type from a by-reference class to a by-value struct does not impact the behavior of the
program. As shown in Figure 4.2 class Complex overrides equality operators so in method
Main the comparison between c1 and c2 is based on their field’s values and assertion is not
correct.

Thus, in order for the transformation of a class into a struct to be safe, either (1) the program
must not use the equality operations or (2) they must be overridden and the new implementation
must be based only on the values of the fields in the objects. This check is complicated by the
fact that the Equals method can be implicitly invoked by many operations in the standard
library and virtual calls to the Equals method must be resolved. We present a method for
checking these properties in Section 5.0.6.

4.0.3 Unique Write Observation

As there are many by-reference class types which can be safely converted to structs but which
are not immutable this section outlines a novel property unique write observation. This property
is sufficient to ensure that the observational equivalence of a program using a by-reference class
and this program after replacing the class with a by-value struct. In this section we informally
describe this condition and, after introducing our formal heap model, we present a formal
definition and method for checking it in Section 5.0.6.

Figure 4.3 shows a program fragment which contains a write that is observed via multiple
locations. In particular the write occurs through the variable c1 but, due to aliasing, the write

16



p u b l i c c l a s s Complex
2 {

f l o a t r e a l , imag ;
4 . . .

p u b l i c s t a t i c boo l o p e r a t o r ==( Complex c1 , Complex c2 )
6 { r e t u r n ( c1 . r e a l == c2 . r e a l ) & ( c1 . imag == c2 . imag ) ; }

8 p u b l i c s t a t i c boo l o p e r a t o r ! = ( Complex c1 , Complex c2 )
{ r e t u r n ( c1 . r e a l != c2 . r e a l ) | ( c1 . imag != c2 . imag ) ; }

10 }
. . .

12 p u b l i c vo id Main ( )
{

14 Complex c1 = new Complex ( 0 . 0 f , 0 . 0 f ) ;
Complex c2 = new Complex ( 0 . 0 f , 0 . 0 f ) ;

16

A s s e r t ( c1 != c2 ) ;
18 }

Figure 4.2: Complex Class with User Defined Equality – Convertible

p u b l i c vo id Main ( )
2 {

Complex c1 = new Complex ( 0 . 0 f , 0 . 0 f ) ;
4 Complex c2 = c1 ;

6 c1 . r e a l = 1 . 0 f ;
A s s e r t ( c2 . r e a l == 1 . 0 f ) ;

8 }

Figure 4.3: Mutation With Multiple Observers

is also observed when reading values through the location c2. In this example converting the
Complex class to a struct would alter the semantics of the assignment Complex c2 = c1 from
by-reference assignment, which creates an alias, to by-value assignment, which simply copies
the values in c1 into c2. The result of this copy is that the later write through c1 is not observed
by (does not effect) c2 which changes the behavior of the assertion. Thus, we know that writes
to aliased locations are potentially unsafe.

Figure 4.4 shows a similar code fragment but, critically, in this fragment the variables c1
and c2 are not aliased. Thus, the write to c1.real is not observed when later reading values
through c2. Thus, in this program converting the Complex class into a struct does not alter the
behavior of the program. This leads to the following definition of unique write observation.

Definition 4 (Unique Write Observation Variable). Given an instruction v.f = x; and the

concrete program state (Env1,σ1,Ob1) the write is uniquely observed through the variable v
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p u b l i c vo id Main ( )
2 {

Complex c1 = new Complex ( 0 . 0 f , 0 . 0 f ) ;
4 Complex c2 = new Complex ( 0 . 0 f , 0 . 0 f ) ;

6 c1 . r e a l = 1 . 0 f ;
A s s e r t ( c2 . r e a l == 0 . 0 f ) ;

8 }

Figure 4.4: Mutation That is Uniquely Observed

if:

• ∀v′ ∈ Vars,v′ = v∨Env(v′) 6= Env(v)

• ∀o ∈ Ob, f ∈ Labels,o. f 6= Env(v)

The definition of unique write observation through variables is a straight forward formal-
ization of the statement that the only location which holds the address of the write target is the
variable v. This is checked by first asserting that any variable which is not v has a different
address and all addresses stored in heap objects differ from the address stored in v.

Definition 5 (Unique Write Observation Heap Location). Given an instruction v.f.g = x;

and the concrete program state (Env1,σ1,Ob1), where σ(Env(v)) = o, the write is uniquely

observed through the field f if:

• ∀v′ ∈ Vars,Env(v′) 6= o.g

• ∀o′ ∈ Ob, f ∈ Labels,(o′ = o∧ f = g)∨ (o. f 6= o.g)

The definition of unique write observation is the dual of the definition for variables. It is
again a straight forward formalization of the statement that all variables hold different addresses
than the field location g in the object o. Similarly each object and field are checked to ensure
that (aside from o.g) all of them contain a different address. While the definition given here
only contains a single field dereference it can be generalized in the natural way to account for
any number of intermediate dereferencing steps.

We note that the unique observed write condition (and immutability condition) directly en-
sure that after any write the program state of the original program and the by-value transformed
programs are always equivalent. Thus, it is immediate that these conditions are sufficient to en-
sure that the original program and resulting programs are observationally equivalent.
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Abb Condition Detail
IA Inheritance: Abstract The class is an abstract class or contains ab-

stract methods
IP Inheritance: Parent The class is a parent of some other classes
IE Inheritance: Extends The class extends other classes
ST Static The class is static
NA Null: Assignment The null value is explicitly assigned to an

object of this class
NC Null: Compare An object of this class is explicitly compared

to the null value
OC Object Comparison Comparison of two objects of this class may

occur.
RP Runtime and performance We may not see improvement from convert-

ing this class to struct
IM Immutability An instance of the class has been mu-

tated,while there was more than one object
points to this instance

EQ Equality This type exist in comparison while it did not
overrides the equal method

CM Constructor method The definition of constructor method is in-
complete.

MM Main method The class contains main method.

Table 4.1: Reference table for generated analysis reports.

4.0.4 Analyzer Reference Table

For ease of reference we summarize each of the conditions in Table 4.1. Each condition that
makes a class unconvertible is listed along with an abbreviation for each item.
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Chapter 5

Heap Analysis Domain

We begin this section by introducing two properties of the concrete program heap (introduced
in chapter 3) that are used to define the abstract domain that is used to analyze the original
program which uses by-reference types. As the intent of the analysis is to understand the
behavior of the by-reference classes in the original program and to simplify the descriptions in
this section, without loss of generality, we assume that the input program only uses by-reference
classes. Thus, the simplified abstract domain in this section omits discussion of primitive types
and by-value structs.

5.0.1 Concrete Heap Properties

In the context of a specific concrete heap, (Env,σ,Ob), a region of memory is a subset of
concrete heap objects C ⊆ Ob. It is useful to define the set P(C1,C2,σ) of all non-null pointers
crossing from region C1 to region C2 as:

P(C1,C2,σ) = {(os, l,σ(os.l)) | ∃os ∈C1, l ∈ Fld(Ty(os)) .σ(os.l) ∈C2}

Injectivity. Given two regions C1 and C2 in the heap, (Env,σ,Ob), the non-null pointers
with the label l from C1 to C2 are injective, written inj(C1,C2, l,σ), if for all pairs of non-null
pointers (os, l,ot) and (o′s, l,o

′
t) drawn from P(C1,C2,σ), os 6= o′s⇒ ot 6= o′t . As a special case

when we have an array object, we say the non-null pointer set P(C1,C2,σ) is array injective,
written, inj[](C1,C2,σ), if for all pairs of non-null pointers (o′s, i,ot) and (os, j,o′t) drawn from
P(C1,C2,σ) and i, j valid array indices, i 6= j⇒ ot 6= o′t .
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5.0.2 Abstract Heaps

An abstract heap is an instance of a storage shape graph [6]. More precisely, an abstract heap
graph is a tuple: (Ênv, σ̂, Ôb) where:

Ênv ∈ Environments = Vars⇀ ̂Addresses

σ̂ ∈ Stores = ̂Addresses→ Inj×2Nodes

where the injectivity values Inj= {true, false}

Ôb ∈ Heaps = 2Nodes

Nodes =NID×2Types××(L̂abels⇀ ̂Addresses)

where the node identifier set NID= N

The abstract store (σ̂) maps from abstract addresses to tuples consisting of the injectivity asso-
ciated with the abstract address and a set of target nodes. Each node n in the set Ôb is a tuple
consisting of a unique identifier for the node, a set of types, a shape tag, and a map from ab-
stract labels to abstract addresses. The use of an infinite set of node identity tags, NID, allows
for an unbounded number of nodes associated with a given type/allocation context allowing
the local analysis to precisely represent freshly allocated objects for as long as they appear to
be of special interest in the program [18]. The abstract labels (L̂abels) are the field labels and
the special label []. The special label [] abstracts the indices of all array elements (i.e., array
smashing). Otherwise an abstract label l̂ represents the object field with the given name.

As with the concrete objects we introduce the notation T̂y(n) to refer to the type set as-
sociated with a node. The notation l̂ is used to refer to the abstract value associated with the
label l̂. Since the abstract store (σ̂) maps to tuples of injectivity and node target information we
use the notation Înj(σ̂(â)) to refer to the injectivity and T̂rgts(σ̂(â)) to refer to the set of pos-
sible abstract node targets associated with the abstract address. We define the helper function
F̂ld : 2Types→ 2L̂abels to refer to the set of all abstract labels that are defined for the types in a
given set (including [] if the set contains an array type).

5.0.3 Abstraction Relation

We are now ready to formally relate the abstract heap graph to its concrete counterparts by
specifying which heaps are in the concretization (γ) of an abstract heap:

(Env,σ,Ob) ∈ γ((Ênv, σ̂, Ôb))⇔∃ an embedding µ where

Injective(µ,Env,σ,Ob, Ênv, σ̂, Ôb)
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(a) A Concrete Heap. (b) Corresponding Abstract Heap.

Figure 5.1: Concrete and Abstract Heap

A concrete heap is an instance of an abstract heap, if there exists an embedding function µ :
Ob→ Ôb which respects the structure and labels of the concrete heap and also satisfies the
injectivity and shape relations between the structures.

Injective(µ,Env,σ,Ob, Ênv, σ̂, Ôb) = ∀ns,nt ∈ Ôb, l̂ ∈ F̂ld(T̂y(ns)) . Înj(σ̂(ns.l̂))⇒

(l̂ 6= []⇒ inj(µ−1(ns),µ−1(nt), l,σ))∧ (l̂ = []⇒ inj[](µ
−1(ns),µ−1(nt),σ))

The injectivity relation guarantees that every pointer set marked as injective corresponds to
injective (and array injective as needed) pointers between the concrete source and target regions
of the heap.

5.0.4 Example Heap

Figure 5.1(a) shows a snapshot of the concrete heap from a simple program that manipulates
expression trees. An expression tree consists of binary nodes for Add, Sub, and Mult expres-
sions, and leaf nodes for Constants and Variables. The local variable exp (rectangular box)
points to an expression tree consisting of 4 interior binary expression objects, 2 Var, and 2
Const objects. The local variable env points to an array representing an environment of Var
objects that are shared with the expression tree.

Figure 5.1(b) shows the corresponding abstract heap for this concrete heap. To ease discus-
sion each node in a graph is labeled with a unique node id. The abstraction summarizes the
concrete objects into three regions represented by the nodes in the abstract heap graph: (1) a
node representing all interior recursive objects in the expression tree (Add, Mult, Sub), (2) a
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node representing the two Var objects, and (3) a node representing the two Const objects. The
edges represent possible sets of non-null cross region pointers associated with the given ab-
stract labels. Details about the order and branching structure of expression nodes are absent but
other more general properties are still present. The label tree{l,r} on the self-edge expresses
that pointers stored in the l and r fields of the objects represented by node 1 form a tree.

The abstract graph also captures the fact that no Const object is referenced from multiple
expression objects but that several expression objects might point to the same Var object. The
abstract graph shows this possible non-injectivity using wide orange colored edges (if color is
available), whereas normal edges indicate injective pointers. Similarly the edge from node 4
(the env array) to the set of Var objects represented by node 2 is injective, not shaded and wide.
This implies that there is no aliasing between the pointers stored in the array (a fact which could
not be obtained via points-to analysis).

5.0.5 Normal Form

Given the definitions for the abstract heap it is clear that the domain is infinite. Thus, we define
a normal form that ensures the number of distinct normal form graphs is finite and use this set
during the fixpoint computation (see [18] for additional information).

Definition 6 (Normal Form). We say that the abstract heap is in normal form iff:

1. All nodes are reachable from a variable or static field.

2. All recursive structures are summarized (Definition 7).

3. All equivalent successors are summarized (Definition 9).

4. All variable/global equivalent targets are summarized (Definition 10).

This normal form definition possesses three key properties that ensure finiteness: (1) the
resulting abstract heap graph has a bounded depth, (2) each node has a bounded out degree,
and (3) for each node the possible targets of the abstract addresses associated with it are unique
wrt. the label and the types in the target nodes.

As each of the properties (recursive structures, ambiguous successors, and ambiguous tar-

gets) are defined in terms of, congruence between abstract nodes the transformation of an ab-
stract heap into the corresponding normal form is fundamentally the computation of a congru-
ence closure over the nodes in the abstract heap followed by merging the resulting equivalence
sets. Thus, we build a map from the abstract nodes to equivalence sets (partitions) using a
Tarjan union-find structure. Formally Π : Ôb→ {π1, . . . ,πk} where πi ∈ 2Ôb and {π1, . . . ,πk}
are a partition of Ôb.
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Recursive Structures. The first step in computing the normal form is to identify any nodes
that may be parts of unbounded depth structures. This is accomplished by examining the type
system for the program that is under analysis and identifying all the types, τ1 and τ2, that have
mutually recursive type definitions denoted: τ1 ∼ τ2.

Definition 7 (Recursive Structure). Given two partitions π1 and π2 we define the recursive
structure congruence relation as1:

π1 ≡Π
r π2⇔∃τ1 ∈

⋃
n1∈π1

T̂y(n1),τ2 ∈
⋃

n2∈π2
T̂y(n2) .τ1 ∼ τ2

∧∃n ∈ π1, l̂ ∈ F̂ld(T̂y(n)) . T̂rgts(σ̂(n.l̂))∩π2 6= /0

Equivalent Successors and Targets. The other part of the normal form computation is to
identify any partitions that have equivalent successors and variables that have equivalent tar-

gets. Both of these operations depend on the notion of a successor partition which is based on
the underlying structure of the abstract heap graph and a general notion of node compatibility:
π1 a successor of π2 and l̂⇔∃n2 ∈ π2 . T̂rgts(σ̂(n2.l̂))∩π1 6= /0.

Definition 8 (Partition Compatibility). We define the relation Compatible(π1, π2) as: Compatible(π1,π2)⇔⋃
n′∈π1

T̂y(n′)∩
⋃

n′∈π2
T̂y(n′) 6= /0.

Definition 9 (Equivalent Successors). Given π1, π2 which are successors of π on labels l̂1, l̂2 we

define the relation π1, π2 equivalent successors as: π1 ≡Π
s π2⇔ l̂1 = l̂2∧Compatible(π1,π2).

Definition 10 (Equivalent on Targets). Given a root r (a variable or a static field) and two target

partitions π1, π2 we define the equivalent targets relation as: π1≡Π
t π2⇔Compatible(π1,π2)∧

(r is a static field∨π1,π2 only have local var predecessors).

Using the recursive structure relation and the equivalent successor (target) relations we can
efficiently compute the congruence closure over an abstract heap producing the corresponding
normal form abstract heap (Definition 7). This computation can be done via a standard worklist
algorithm that merges partitions that contain equivalent nodes and can be done in O((N +E)∗
log(N)) time where N is the number of abstract nodes in the initial abstract heap, and E is the
number of abstract addresses in the heap.

5.0.6 Condition Checking

Using this domain the semantic conditions for conversion from chapter 4 can be checked in a
straight forward manner. The abstract heap analysis is run on the program to compute a call-

1The definition is symmetric on the properties of the nodes, the τ1 ∼ τ2 equivalence relation on types, but is
not symmetric on the structure of the underlying graph.
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graph and an over-approximation of the heap state at every point in the program. We then iterate
over all the instructions in the program and inspect the abstract heap model at the operations
(assignment, comparison, and method calls).

Immutability. The immutability condition is checked by enumerating the bytecodes in every
method and for each assignment noting the type of the node that the write operation is mutating.
The main complication is for writes in constructors where we need to ignore assignments to
fields through the this object unless other pointers to it have been created. The model enables
these items to be quickly checked by ensuring that (1) the target abstract node of the write has
a single incoming edge and (2) that this edge comes from the this variable.

Equality and Equals. Checking for use of the equality or equals methods is again a straight
forward enumeration and checking of the relevant bytecodes and method invocations. However,
as C# programs can make heavy use of interfaces (which structs can implement) we make use
of the call graph to determine if a call to Equals on an interface type may result in a call to the
Equals method of a type we are interested in.

Unique Write Observation. In order to check the unique write observation condition at a
member field assignment we consider two cases: writes through a variable and writes through
a pointer stored in the heap.

The first case is a simple write through a variable. In this case we simply check that in the
abstract heap model the only edge which points to the target abstract node is the edge associated
with the variable that the write occurs through.

The more complex case is if the write is being done through a pointer stored in a heap
location. In this case we first check, as in the write through variable cases, that there is a
single incoming edge to the abstract location that is being modified by the write. However,
since edges between abstract heap locations may represent multiple pointers simply ensuring
there is a single incoming edge is not sufficient to ensure that there is only a single location
which contains a pointer to the object which is being modified by the write (as needed by the
definition of unique write observation). Thus, we also check that this single incoming edge is
also injective, i.e. none of the pointers it represents are aliased, which implies that there is only
a single location which contains a pointer to the object being written.

Figure 5.2(b) shows an example with two abstract heaps. On the left is an abstract heap
where the write x[3].g = 1 may not be uniquely observed as the edge associated with the
pointers stored in the array (the [] labeled edge) are not injective. However, the abstract heap on
the right illustrates an abstract heap where the write x[3].g = 1 is guaranteed to be uniquely
observed as the node representing the objects that are pointed to by the array has (1) a single
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(a) It is not safe to convert to value
type.

(b) It is safe to convert to value
type.

Figure 5.2: Abstract heap shows if an object is injective to not.

incoming edge and (2) this edge is injective. Thus, this example illustrates how the notion of
uniquely observed writes enables the conversion to structs of both objects that are modified
through variables but also when they are stored in heap based data structures. In addition this
example illustrates the utility of the heap domain, and injectivity information, described in this
section.
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Chapter 6

Implementation and Experimental
Evaluation

In order to help developer quickly identify the convertible classes we implemented a plug-in in
Microsoft Visual Studio using the Roslyn Framework [2] and the Jackalope heap analyzer [1].
This application analyzes C# programs and generates a detailed report about the convertibil-
ity (or issues identified) for each class in the program. The add-in also supports a automatic
conversion of classes that are identified as convertible.

In order to check the effect of the conversion, we selected several programs to use as case
studies. These programs represent code from high-performance computing, simple databases,
and image rendering. We used our software to find out which classes are convertible to structs
and evaluate the following questions:

1. How many classes the converter is able to identify as trivially convertible, i.e. by chang-
ing the class keyword to struct.

2. Of the classes which are not trivially convertible, which conditions do they fail and how
much manual refactoring effort is required to convert the most profitable (based on pro-
filing information) of these.

3. What is the impact of these conversions on total memory allocated.

4. What is the impact of these conversions on Total Execution Time.

We measure the runtimes using a command-line batch file to run the application K times
and report the average of all runs. Memory allocation is measured using the .Net Analyzer in
Visual Studio 2010 Ultimate.

29



Class Is Convertible? Reason
Driver No MM
Raytracer Yes
Surfaces No ST
Vector Yes
Color Yes
Ray Yes
Isect No NC × 1 , NA × 1
Surface Yes
Camera Yes
Light Yes
ScenceObject No IP, IA
Sphere No IE
Plane No IE
Scene Yes

Table 6.1: Convertibility report for Raytracer. The safety of converting each type is reported
in the Is Convertible? column. For types that are not convertible the detected issues and
multiplicities of these issues are reported in the Reason column refer to Table 4.1.

6.0.1 Case study:Raytracer

The first case study is a basic Raytracer from Microsoft Research and was initially used as a
demonstration benchmark for the Thread Parallel Libraries (TPL) [3]. This program generates
an image by tracing the path of light through pixels in an image plane and simulating the effects
of its encounters with virtual objects (in our benchmark 2 spheres on a flat surface).

Table 6.1 shows an overview of the analysis report generated by our tool. For each user
defined class in the program we list the convertibility result in the IsConvertable? column and
if it is not convertible we list the reasons as reported by the tool in the Reason column. In
the table the reasons for non-convertibility are given via their code from Table 4.1 and we also
show the multiplicity of the locations where the given issue was detected in the source. In
actual use the tool provides a more extensive listing, including line numbers, for these issues so
that programmers can quickly and easily resolve them to enable safe conversion to using struct
types.

The result shows that more than 50% of the classes are automatically convertible. However,
we want to focus converting classes that have a large number of instances as these converting
them will have the largest impact on memory usage and performance. Table 6.2 shows the top
three class types, as reported by the Visual Studio Profiler, that were allocated during program
execution.

Figure 6.1 shows the performance of the original program using by-reference classes and
the program that results from automatically converting the top three types, as reported by the
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Class Pct. Allocations Class Fields Total Size
Vector 57.72% double × 3 32 B
Color 27.54% double × 3 32 B
Ray 9.34% Vector × 2 16 B

Table 6.2: Highest allocation rate classes. The percentage of allocations for each of the 3
classes with the highest allocation is shown in column Pct. Allocations. The Class Fields
column shows the member fields for the type and the Total Size column reports the number of
bytes required by a single object of the type.

(a) Total Memory Allocation In Megabyte. (b) Total Execution Time.

Figure 6.1: Raytracer performance comparison: baseline by-reference implementation (with
classes) and converted by-value implementation (using structs).

profiler in Table 6.2, to use by-value structs. The total memory allocated by each program is
shown in Figure 6.1(a) and the Total Execution Time for the programs is shown in Figure 6.1(b).
The results show that converting to value types reduce the total memory allocation by 87%,
compared to reference type implementation.

These results show that a large reduction in memory allocation can be obtained by con-
verting only a few types in the program. Although the converted classes are relatively small
(between 16-32 bytes each) they are used extensively throughout the program and thus the
number that are allocated is very large during the program execution.

The results also show (Value Type bar in Figure 6.1) that the conversion to the value types
results in a slight slowdown in execution. This is due to the frequent passing of Vector types as
parameters. As these types are 32B each this has a non-trivial performance impact. However,
C# allows by-reference passing of value types using explicit ref parameters. Converting the
needed parameters results in an implementation which reduces execution time by 6% (the Call
by ref bar).
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Class Is Convertible? Reason
BH No MM
BTree No IM × 4
Node No IA ,IP
Cell No NC × 1,NA × 1,IM × 2,IE
HG Yes
MathVector No NA × 3
Body No IM × 7 ,OC × 1,IE

Table 6.3: Convertibility report for BH. The safety of converting each type is reported in the Is
Convertible? column. For types that are not convertible the detected issues and multiplicities
of these issues are reported in the Reason column.

Class Pct. Allocations Class Fields
Double[] 71.06%
MathVector 23.69% double[] with length 3
HG 1.28% MathVector ,Body(3 ×MathVector, double) ,double

Table 6.4: Highest allocation rate classes. The percentage of allocations for each of the 3
classes with the highest allocation is shown in column Pct. Allocations. The Class Fields
column shows the member fields for the type and the Total Size column reports the number of
bytes required by a single object of the type.

6.0.2 Case study:Barnes-Hut

Our second case study is an implementation of our motivating example, the Barnes-Hut algo-
rithm. This program performs a gravitational interaction simulation on a set of bodies (the Body
objects) using a fast-multiple technique with a space decomposition tree. The implementation
includes seven classes. Class MathVector in this program represents a vector in three dimen-
sional space. Since the nature of this program creates a lot of instances of type MathVector

converting this class to value type would make a huge memory impact.The analyzer reports
this class as not automatically convertible, as shown in Table 6.3. However, the report shows
this is soley due to two explicit null assignments. Changing the code slightly to remove the
null assignment is sufficient to make the Vector type convertible to struct. We also noticed
that by converting the only member of the class, an array of double with fixed size of three, to
three double primitive type can further improve program performance. According to Table 6.4
arrays of type double has more than 71% of the total number of allocated objects. The second
highest is the MathVector type.

In table Table 6.3 BTree has been reported unconvertible because it is been mutated in four
different parts of the program while it has more than one object pointing to it. Figure 6.2
shows on such part of the code. The method expandBox receives an instance of the Btree
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p u b l i c vo id expandBox ( BTree t r e e , i n t n s t e p s )
2 {

4 boo l inbox = i c T e s t ( t r e e ) ;

6 t r e e . r s i z e = 2 . 0 ∗ r s i z e ;

8 t r e e . r o o t = newt ;

10 }

Figure 6.2: Mutation happened at line 6 and 8 in method expandBox in Barnes-Hut program

(a) Total Memory Allocation In Megabyte. (b) Total Execution Time.

Figure 6.3: BH performance comparison: baseline by-reference implementation (with classes)
and converted by-value implementation (using structs).

class as a parameter. Inside the method this object has been is mutated. At the time the BTree

object is mutated there are other live references pointing to the instance. It is obvious that
programmer expect to see these changes in caller method after returning from the callee method
(expandBox). However, converting the BTree class to a by-value type will result in copies
being created for the callee and the loss of the updates in caller method.

To see how effective was the conversion of the MathVector and HG classes is we run .Net
profiler and as Figure 6.3(a) shows, the BH application shows a 93% saving in memory alloca-
tion. Moreover these transformations result in a 15% of improvement in performance.

6.0.3 Case study:DB

The final case study is the Database application from the SPEC JVM98 benchmark suite (which
we converted to C#). This program reads records from a 1MB data file and execute multiple
database operations including add, delete, search and sort.

This program contains three classes of which the Entry class has the highest rate of alloca-
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Class Is Convertible? Reason
Entry Yes
Database No IM × 6
MainCL No MM

Table 6.5: Convertibility report for DB. The safety of converting each type is reported in the Is
Convertible? column. For types that are not convertible the detected issues and multiplicities
of these issues are reported in the Reason column.

(a) Total Memory Allocation In Megabyte. (b) Total Execution Time.

Figure 6.4: DB performance comparison: baseline by-reference implementation (with classes)
and converted by-value implementation (using structs).

tion. So we expect converting it will be an effective way to decrease memory allocation.

Table 6.5 shows the analysis report generated by our tool. The result shows that the class
Entry is automatically convertible. Converting this class is our best option. Since there is only
one instance of class Database during runtime and this class is not automatically convertible
we did not try to convert it.

Figure 6.4 shows the performance of the original program using by-reference classes and
the program after we convert class Entry to a by-value type. Figure 6.4(a) shows the total
memory allocated for each program and the Total Execution Time is shown in Figure 6.4(b).
It can be seen that, despite our expectations, memory usage increased by 89%. And moreover
the execution time grows up by 8%.

As can be seen we didn’t achieve any performance improvement! So we checked the com-
piled code of the program and we discovered that this is because of the way .Net manipulates the
List of struct type. Our investigation showed that the internal runtime was using reflection dur-
ing copies involving value types, allocating large quantities of System.Reflection.FieldInfo[]
objects.

We reported this finding as a potential performance bug in the .Net runtime to our collabo-
rators at Microsoft. To evaluate the performance impact of our transformations in the absence
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(a) Total memory usage in megabyte. (b) Total Execution Time.

Figure 6.5: Performance comparison for the secon version of DB: in this version we eliminated
the remove operation , baseline by-reference implementation (with classes) and converted by-
value implementation (using structs).

of this problem we disabled the remove operation in the database and re-ran the programs. The
new times are shown in Figure 6.5 the total memory allocation dropped by 140 MB in com-
parison with the case with the remove operation and reached the point that is slightly less than
original by-reference type. Figure 6.5(b) shows that after we eliminated the remove operation
the execution time also decreased by 6%.
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Chapter 7

Related Work

The idea of altering the semantics of a type declaration from by-reference to by-value is a well
known technique for improving the memory use and runtime of a program. Despite the ubiquity
of this transformation and the large benefits it can provide, there is a relatively small amount
of work on how to automate the process (either fully or partially). A major reason for the lack
of work on this problem is the need to have precise heap sharing information, such as provided
by the analysis used in this work, in order to identify opportunities outside of the simple case
when the objects of interest are only stored in variables.

The largest body of related work is on the topic of compiler directed stack-allocation and
escape analyses in object-oriented languages such as Java [5, 7, 10, 23]. These techniques
focus on the identification of objects that do not escape from a given call scope and can thus
be allocated on the call stack like a local variable which is then reclaimed automatically when
the call returns. This approach provides several of the same benefits as the conversion of a
by-reference type to a by-value type – reduced memory allocation/deallocation. However, the
full object still needs to be allocated (including space for object headers) and it does not reduce
the number of pointer loads that are taken during an access path traversal in the program. Thus,
in contrast to a full conversion to by-value semantics, stack-allocation does not reduce the heap
footprint and does not provide some performance benefits that arise from reduced memory
loads.

The most directly related work is on the topic of object-colocation [9, 11, 17], conversion
to immutable types [14], and pool allocation or region-based allocation [7, 12, 16, 19]. These
approaches use various static analysis techniques to identify sets of objects that are in related
structures and allocate them in the same memory region. Often they are also able to infer
points in the program when all objects in a given region are known to be dead and can then
free the entire region (instead of individually reclaiming each object). The work by Guyer
and McKinley uses static analysis (along with runtime information) to allocated objects close
to the object (or objects) that point-to them. The objective is to make memory prefetching
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more effective by placing the objects nearby in memory. However, like the work on stack
allocation, the full objects (including headers) must still be allocated and the pointers explicitly
dereferenced when accessing the object fields. The work in [9, 17] examines how two object
definitions can be merged (i.e. inlining) using the condition of one-to-one fields or unique-store

fields. These definitions focus on when there is a unique points-to relation between parent and
child objects either always the same child or allowing for multiple values at different times
in the program. The definitions used in this work are orthogonal in the sense that they focus
on mutation instead of ownership to drive the conversion. However, the check for unique

write observation uses the unique-store field property when a write occurs. Thus, the safety
definitions in this paper can be seen as a further refinement of the work in [9, 17].

Finally, we note that despite the large body of work on points-to analysis [4, 13, 21, 22]
none of these techniques can satisfactorily resolve the needed unique ownership properties
(one-to-one, unique-store, or unique observer) that are used in this paper and previous work.
Conversely, work on shape analysis has resulted in a number of techniques that can resolve
these properties but are too computationally expensive [20] or limited in the classes of programs
they can accept [8, 24]. Thus, this work utilizes the Jackalope heap analysis toolkit [18] which
is able to provide the precise information needed on sharing in order to resolve the unique
observer property while being efficient enough and sufficiently robust to run on real-world
programs.
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Chapter 8

Conclusion

In this work we examined how high memory use in object-oriented programs can be addressed
through the conversion of by-reference class types into by-value struct types. The approach
taken was to provide an automated analysis tool which could (1) identify types that were safe
to convert without any further program modifications and (2) when a type is not safe to convert
to provide a summary of needed changes that can be made by the developer. The effectiveness
of this approach was demonstrated on a suite of C# applications. The results show that the
approach is useful in automatically identifying by-reference class types which can be safely
converted to by-value struct types and, in the cases where conversion may not be safe, provides
the developer with a useful summary of possible problems. Using a profiler we identified high
allocation types and utilized the conversion reports to re-factor these class types into structs.
The resulting programs show up to a 15% reduction in runtime and 93% reduction in total
memory allocation. These positive preliminary results provide guidance for future work on the
topic. Two topics of particular interest are the further automation of the conversion process
and exploring how to perform conversion only for specific subcomponents of the program. In
the first area of future work it is clear that many of the changes could automated and included
as part of a programmer directed refactoring tool. The second area of work is motivated by
the following observation: in many cases a class is often used as a by-value type (usually
as an immutable type) in some computationally expressive parts of the program but there are
other places in the code where converting the class to a struct is not feasible. Thus, research
into identifying these important parts of the program and automatically generating the needed
boxing/unboxing for the relevant classes is of interest.
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